• <code id="66msc"></code>
          1. <code id="66msc"><em id="66msc"><track id="66msc"></track></em></code>
            <nav id="66msc"><video id="66msc"></video></nav>

            <strike id="66msc"></strike>
          2. <code id="66msc"><em id="66msc"><track id="66msc"></track></em></code>
            <code id="66msc"></code>

            <strike id="66msc"></strike>
            <th id="66msc"><video id="66msc"><span id="66msc"></span></video></th>
          3. 新疆11选5新疆11选5官网新疆11选5网址新疆11选5注册新疆11选5app新疆11选5平台新疆11选5邀请码新疆11选5网登录新疆11选5开户新疆11选5手机版新疆11选5app下载新疆11选5ios新疆11选5可靠吗
            設為首頁加入收藏網站地圖 ENGLISH 信息門戶
            通知信息
            當前位置: 首頁 >> 學術信息 >> 正文

            關于舉辦薛靚博士學術報告的通知

            發布時間:2019年12月16日 15時41分49秒  瀏覽次數:

            各部門、各單位:

            應我校網絡空間安全學院邀請,加拿大滑鐵盧大學薛靚博士將于12月19日來我校做專題學術講座,歡迎廣大師生參加!報告的具體安排如下:

            報告題目:Consent-based Privacy-preserving Decision Tree Evaluation

            報 告 人:薛靚 博士

            報告時間:2019年12月19日(周四)14:30—16:00

            報告地點:網絡空間安全學院會議室

            摘    要:Decision trees are one of the most widely used machine learning algorithms that can be used for data classification. Deploying the decision tree-based models into cloud servers has inspired many real-world applications, such as remote medical diagnoses and face recognition. However, as stringent privacy regulations of personal data, such as GDPR, takes effect, the decision tree evaluation must comply with some requirements. First, the model parameters and user data (input and output) should be protected. Second, different applications should obtain the classification results with users’ consent in the context of user-customized services. In this talk, we present a construction of consent-based privacy-preserving decision tree evaluation scheme. Specifically, to achieve model parameter privacy and user data privacy, the original decision tree evaluation is transformed into a private decision tree evaluation, such that all operations can be performed in the encrypted domain using an additively homomorphic encryption primitive and a secure comparison protocol. In addition, by integrating a proxy re-encryption technique, the scheme enables third-party applications to provide user-dependent services for users based on user’s classification results. The security analysis shows that the proposed scheme achieves the desirable security properties and performance evaluation demonstrates that the scheme is efficient and is suitable for real-world implementations.

            報告人簡介:Liang Xue received the B.E. degree on Information Security and the M.S. degree on Computer Science and Technology from University of Electronic Science and Technology of China in 2015 and 2018, respectively. Currently, she is pursuing the PhD degree at the University of Waterloo. Her research interests include applied cryptography, privacy enhancing technologies, and Blockchain.

            特此通知。


            國際合作與交流處

            網絡空間安全學院

            歸國留學人員聯誼會

            2019年12月16日



            上一條:關于舉辦林璟鏘研究員學術報告的通知 —2019西郵學術講座第170講

            下一條:關于舉辦第五十五期西郵人文大講堂的通知

            關閉頁面

            雁塔校區

            電話:029-85383106

            郵政編碼:710061

            雁塔校區地址:西安市長安南路563號

            長安校區

            電話:029-88166105

            郵政編碼:710121

            長安校區地址:西安市長安區西長安街618號

            版權所有:西安郵電大學 2011-2020 中國西安長安南路563號 陜ICP備040096號
            新疆11选5{{转码主词}官网{{转码主词}网址